核磁共振技术的在生物研究上的应用

2023-01-16

本文主要是 核磁共振技术的在生物研究上的应用 相关的知识问答,如果你也了解,请帮忙补充。

参考知识1

生物膜上含有的H、C、P等具有非零自旋的磁性核 ,当与外磁场和射频场相互作用,并且满足共振条件时,将吸收射频场能量而发生自旋能级间的跃迁,这就是核磁共振(NMR)的基本原理。由于NMR技术可以对含水样品进行非破坏性测量,从而使观测能在接近生理条件下实现,并可通过生物膜上H、C和P进行综合研究,尤其是可以从原子或基团水平上提供分子的动态结构和运动的信息,是研究生物膜结构的有力工具。
生物膜主要由蛋白质和脂质组成,结构比较复杂,而磷脂脂质体却能表现出生物膜结构的许多性质,是生物膜的理想模型。磷脂脂质体主要以凝胶相和液晶相存在,在凝胶相,分子的局部运动很慢,分子间和分子内的偶极相互作用没有被有效地平均,所以NMR谱线很宽,得到的信息非常少;而在液晶相,分子局部运动受到的限制减少,运动加快,从而使NMR谱线窄化,得到高分辨的NMR谱。
NMR技术在生物膜结构研究中应用非常广泛。用H、C和P NMR谱可以鉴定磷脂的种类。通过弛豫时间测定的方法可以研究磷脂双分子层不同部位的流动性。将磷脂分子不同位置的氢选择氘代,用H四极分裂和P化学位移各向异性的方法可以研究磷脂脂酰链的流动性、极性基团的构象以及磷脂与其它分子的相互作用(蛋白质、药物和金属离子等),利用P化学位移各向导性方法可以研究磷脂的多形性。近年来,随着NMR技术的发展,二维(2D)和固体高分辨NMR技术也被应用于生物膜研究领域,并且已成为非常重要的手段。利用通过化学键建立的相关谱(如COSY等)可以进行多组分磷脂或磷脂与其它分子混合体系每个基团的谱线归属。而通过空间建立的相关谱(如NOESY等)可以直接提供基团之间距离的信息,是研究膜脂结构以及与其它分子相互作用的有力工具。固体高分辨技术不仅可以研究液晶态的磷脂,而且可以应用于凝胶态磷脂的研究中。
对于某一种磁性核,其磁矩在磁场中可以有不同的取向。对于质子而言,可以有两种取向,即与静磁场平行和反平行,前者属于低能态,后者属于高能态。如果在垂直于静磁场的方向上加一个射频场,当射频场的频率与核的Larmor频率(核磁矩绕磁场方向进动频率)相等时,处于低能态的核子便吸收射频能,跃迁到高能态。射频场去掉后,高能态的核子通过弛豫过程又回到低能态,从而就能观察到NMR的信号。弛豫过程有两种,一种是自旋—晶格弛豫,此过程用T1表示;另一种是自旋—自旋弛豫,用T2表示。T1是描述自旋体系吸收能量后将其能量转移给它周围环境而恢复到平稳态的时间,T2过程中自旋体系内部有能量的偶合,自旋体系总能量没有变化。弛豫时间与分子运动有关,通过弛豫时间的测定,可以研究生物膜各部位的流动性。
生物膜C和P化学位移各向异性与运动有很大关系。所谓化学位移各向异性,是指核所处的静磁场方向改变,核的共振频率(即化学位移)就发生变化,由于I=的核周围电子密度分布是球对称,所以如果静磁场方向改变, 核的有效感应磁场也就随之变化,处于不同形态,其运动方式不同,因而化学位移被平均的取向也不同。通过P化学位移各向异性可以研究磷脂的多形性;此外,还可以用I=1的H各向异性(四极分裂)谱研究磷脂分子空间取向的平均分布信息。
2D NMR有别于常规一维(1D)NMR的主要点在于1D NMR只涉及一个频率变量,是吸收峰强度对一个频率变量作图;而2D NMR谱则代表两个独立频率,是吸收峰强度对两个频率变量作图。一般将2D NMR实验分4个区域,即预备期、发展期(t1)、混合期(可以没有)和检测期(t2)。预备期是为了使磁化矢量达到适当的初始态而设置的,接着在发展期磁化矢量进行演化,在混合期内自旋系统发生相干转移,最后在检测期信号被检测。逐次改变t1反复循环累加,最后将所得数据进行两次傅里叶变换:即可得到2D NMR谱。2D NMR谱可分为通过化学键和空间建立起来的两类相关谱,两类2D NMR谱对谱线归属都非常重要,后者对于生物膜分子空间构象研究也非常有力。
综上所述,核磁共振分析方法在生物研究 上的应用主要有以下几个方面: 测定溶液中生物大分子的三维空间结构; 分析生物大分子在溶液状态下的分子动力学; 研究蛋白质的相互作用和酶的作用机理等; 解析固体膜蛋白和纤维蛋白的结构和运动性质; 基于蛋白质靶点的药物筛选和设计; 研究活体状态下生物分子的功能活动和生理代谢。

相似知识
浅谈现代生物制药技术在医药领域的应用 参考知识1浅谈现代生物制药技术在医药领域的应用  引言:生物制药技术在制药工业上具有十分广阔的发展前景,与传统生物制药相比具有无与伦比的优越性,下面就是我来浅谈现代生物制药技术在医药领域的应用,欢迎大
简述磁共振成像(MRI)及其临床应用价值。 参考知识1MRI是利用生物磁自旋原理,收集磁共振信号经计算机重建图像的新一代成像技术,可使某些CT、扫描不能显示的病变成像显影,当前MRI的临床应用日益广泛,其主要用途如下:(1)颅内疾病特别是鞍区、
模式识别、数字信号处理、机器人,这3个研究方向,哪个和生物的交叉学科挂钩? 都挂钩。模式识别解决的问题实际上就是分类问题,在数字图像处理领域涉及的非常多。比如通过超声,核磁共振等扫描成像,需要模式识别的理论把不同组织区分开来,或者直接识别病变组织的参数;再比如识别一个单位内的
浅谈生物技术在食品分析中的应用 参考知识1我国常用食品分析与安全检测技术化工仪器网2016-11-10·优质财经领域创作者【中国化工仪器网本网原创】导读:食品分析与安全检测技术作为食品质量安全管理体系的技术支撑,是国家开展食品安全监
生物显微技术生物学中的应用? (1)对受精作用、染色体的结构和行为的研究为细胞遗传学的建立和发展打下了基础。显微技术在细胞学、组织学、胚胎学、植物解剖学、微生物学、古生物学及孢粉学发展中,已成为一个主要研究手段。(2)超微结构的研
生物共振的原理是啥? 共振(resonance)共振是指一个物理系统在其自然的振动频率(所谓的共振频率)下趋于从周围环境吸收更多能量的趋势。自然中有许多地方有共振的现象。人类也在其技术中利用或者试图避免共振现象。一些共振的
信号分析在医学领域有那些的应用? 参考知识1医用仪器如:CT、核磁、心电图机、DR、CR、监护仪、超声等等都涉及到将各种采集到的信号进行转换再通过计算重建成人们能看到的图像及数字。 参考知识B从而阐述信号与系统在生物医学中的应用。数字
你知道微藻和动物性生物饵料在水产养殖中的应用研究吗? 参考知识11微藻生物饵料营养对40多种常见饵料微藻的成份含量分析表明,微藻蛋白质含量较高可达40%以上,如小球藻为50~60%,螺旋藻为60~70%,而牛奶和肉类一般为30~40%。2微藻生物饵料应用